Advanced Higher - Mathematics of Mechanics

Unit 3

Outcome 1.2 Applying Calculus Skills to Differentiation	NS	OT	VG
I can differentiate functions involving: $\tan x$, $\sec x$, $\csc x$,			
cot <i>x</i> .			
I can differentiate functions involving: e^x , ln x			
I can differentiate functions using the chain rule			
$\left(f(g(x))\right)' = f'(g(x)).g'(x)$			
I can differentiate functions using the product rule			
$\left(f(x)g(x)\right)' = f'(x)g(x) + f(x)g'(x)$			
I can differentiate functions using the quotient rule			
$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$			
$(g(x))$ – $(g(x))^2$			
I can differentiate functions which require more than one			
application of the chain rule, product rule or quotient rule			
I know that $\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$			
I can apply differentiation to simple rates of change eg			
rectilinear motion, optimisation.			

I can use parametric differentiation to find the first and second derivatives.		
I can apply differentiation to related rates in problems where the functional relationship is given explicitly eg. motion in a plane.		
I can solve practical related rates by first establishing a functional relationship between appropriate variables.		
I can differentiate functions expressed implicitly eg. find $\frac{dy}{dt}$ given $\frac{dx}{dt}$ and the function $x^2 + y^2 = r^2$ and x and y are functions of t.		

Outcome 1.3 Applying Calculus Skills to Integration	NS	OT	VG
I know and can use standard results including $\int e^x dx$,			
$\int \frac{1}{x} dx, \int \sec^2 x dx$			
I can integrate using a substitution when the substitution is			
given.			
I can integrate a simple product or quotient of functions			
when one function is the derivative of the other.			
I can integrate proper rational functions using partial			
fractions.			
I can use one or repeated applications of integration by			
parts.			
I can apply integration to a range of physical situations			
including to evaluate areas, volumes by revolution and the			
centre of mass of a uniform lamina bounded by curves.			

Outcome 1.4 Applying Calculus Skills to Differential	NS	OT	VG
Equations			
I can find a general solution of a first order differential			
equation where the variables can be separated.			
I can solve a linear first order differential equation using an			
Integrating Factor.			
I can solve second order homogeneous equations where the			
auxiliary equation has real roots.			
I can formulate a simple statement involving rate of change			
as a separable first order differential equation.			
I can find general solutions and solve initial value			
problems, for example, mixing problems, growth and			
decay problems, simple electronic circuits and simple			
examples of damped simple harmonic motion			